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A form of the Verlet-algorithm for the integration of Newton’s equations of motion is derived
from Hamilton’s principle in discretized space and time. It allows the computation of exactly time-
reversible trajectories on a digital computer, offers the possibility of systematically investigating the
effects of space discretization, and provides a criterion as to when a trajectory ceases to be physical.

For three decades, the Verlet algorithm [1, 2] is the
method of choice in molecular dynamics simulations
(MDS in short) [3, 4]. Newton’s equation of motion
are hereby integrated numerically via

ot + At) = 22(t) — 2(t — At) + (A F(z()). (1)

For simplicity, only one degree of freedom is consid-
ered; x(t) is the position of a particle at time ¢, At is
the time step, and F' is the force term that governs
the motion. From a numerical point of view (1) is the
simplest third-order algorithm for the task. The Verlet-
algorithm, therefore, suggests itself naturally for use
in the simulations of large systems like, e. g., the mo-
tion of proteins in solution [4]. By deriving the Verlet
algorithm from Hamilton’s principle [5], Gillilan and
Wilson [6] recently demonstrated that this algorithm
also has a deep physical foundation. A justification
for and an intuitive understanding of Hamilton’s prin-
ciple, i.e. the principle that classical trajectories are
those of extremal action, comes from the path integral
description of quantum mechanics [7].

One of the outstanding properties of (1) is its time-
reversibility [2, 8, 9]. That is, the form of (1) is in-
variant under an exchange of z(¢ + At) by x(t — A?).
It therefore is equally appropriate for computing the
forward and the backward time evolution.

Nevertheless, in an actual implementation on a
digital computer, the exact time-reversibility of the
Verlet-algorithm is broken due to roundoff errors.
This generates problems — for example, when in-
vestigating the origin of irreversibility and checking
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the validity of Boltzmann’s entropy concept [10] in
many-particle systems by means of MDS. It has been
known for a long time that MDS-results in the con-
text of investigating irreversibility in the evolution of
Boltzmann’s entropy have to be taken with a grain
of salt since velocity inversion does not generate an
exactly time-reversed behavior [11]. Spurious effects
due to roundoff errors occur also in dissipative dy-
namical systems [12], where numerical dissipation is
superimposed on the dynamics at hand.

Roundoff errors occur because real numbers are
represented as finite-size floating point numbers
in digital computers [13]. This representation in-
troduces an uncontrollable nonlinear discretization
which gives rise to a slighly incorrect, machine-
dependent arithmetic. Integer arithmetic, in contrast,
is exact and machine-independent on digital comput-
ers. In a seminal but not widely known paper, Wolff
and Huberman [14] made use of this property to sys-
tematically investigate the effects of discretization on
the logistic map, a generic dissipative system which
exhibits chaotic behavior. Rather than discretizing a
continuous equation, they started out from the concept
of a granular state space and looked at the behavior
of integer maps that resemble the logistic one.

Similarly, a large class of algorithms, among them
the Verlet-algorithm, can be implemented on a com-
puter using integer arithmetic in order to make these
algorithms exactly invertible [8]. Levesque and Ver-
let [2] applied this integer representation of the state
space to solve the problem of generating a reliable
time evolution of the Boltzmann entropy in an MDS.
Rather than representing the force term in (1) by the
closest integer (i. e., the ROUND function), Levesque
and Verlet chose to represent it by the integer part
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of the real number (i.e., the INT function) which is
less optimal as we shall see. In the following, it will
be shown that Wolff and Huberman’s concept of spa-
tial discretization together with Gillilan and Wilson’s
time-discrete Hamiltonian principle provide the start-
ing point for moving any arbitrariness in an exactly
time-reversible algorithm for computing Newtonian
trajectories. Moreover, the same approach simulta-
neously produces a criterion for the validity of the
computed trajectory.

Our starting point for the application of Hamilton’s
principle is the action integral of a trajectory ¢(?),

ty 1 )
Slg®)] = / {Eq(t)2 —V[q(t)]} dt. ()
ti

Discretization of time and space via t = t; + kAt, and
q = qo+xAq with k, z € Z, changes (2) into an action
sum for the discretized trajectory {z }. Specifically,
the representation of the action integral in granular
state space and time corresponding to (2) is

1= Tea — Tk ]’ ’
Si{ai}l =54t Y [—] (Ag)
=0

y At

N-1 3
— At Z Vi(qo + x1Aq).

k=0

In deriving (3), the representation of the momentum
introduced by Gillilan and Wilson [6] was chosen [15].

A classical trajectory in granular state space and
time is one that obeys Hamilton’s principle, i.e., it
extremalizes the action sum (3). When dealing with
functions defined on discretized space, we cannot re-
sort to the usual technique of looking for the zeros
of appropriate derivatives in order to find extremal
points. Nevertheless, it is immediately clear that a
function S(z), defined on the integers, is extremal for
a particular value of z if the sign of the difference
in S obtained by varying = to z — 1 is the same as
that for varying x to  + 1. If one uses the following
notation for a variation of the action S at x;, in the +
and — directions, respectively,

aS:t(.I?k) = S(.’IT(), L oy T RN EY
— S(xop, ..

,IN)
(4)

L+l xN),

the discretized extremality condition discussed above
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assumes the simple form
0S_(x)dS.(xy) > 0. 5)

Insertion of the discretized action (3) into expression
(5) results in an inequality condition which any triple
(Tk—1, Tk, Tr+1) thatis part of a physical trajectory on
granular space has to obey:

{.Z'Iﬁ.] i 2.’L'k +Tp—1 + 1

o (At)z V(qo + l'kAq) - V(QO + (.'Bk == I)Aq) }
(6)

(Ag)?
“ {Ik+] —2rr+xp_ — 1

, Vigo + (zx + DAQ) — Vi(go + xkAq)} <0
(Ag)? '

Equation (6) can be used for the derivation of a
time-reversible integration algorithm. That is, once
x,_1 and x, are specified, we seek an x4 which
fulfills that criterion. The lhs of (6) is a simple second-
degree polynomial in 2, with a minimum at

+(A?)

P = 2By — Tp— @)

AR Vi(go + (xx + DAg) — V(qo + (zx — 1)Aq)
2A¢? ’

Since M is not integer-valued in general, the most
promising candidate for a solution in the discretized
state space is the one integer number which lies closest
to it, namely

o = 22;, — x5_; — ROUND(a), where ®)

o = A2V 0+ @i + DAG) — Vigo + (@ — DAg)
2Aq? ’

The existence and uniqueness of this solution to (6)
remains to be discussed. The two zeros in x4 of the
Ihs of (6) — which may be denoted by ), and z\,,

(1) 2)
k+10 xk+l]

in which the sought-for integer value of z,,; lies.
Three cases need to be distinguished. First, if there
is only one integer enclosed in that interval, then it
is the one already found by (8). Second, if the in-
terval encloses more than one integer number, one
can convince oneself easily that the solution (8) has
found is the only one relevant. This is because all

; (1 (2) :
with z, [, < z7}, — define an interval [z
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other possible solutions that satisfy the extremality
condition can be considered to be spurious: in the
limit At — O the parabola defined by the lhs. of (6)

(1) (2)

is contracted and the interval [xk L +1] shrinks, so

that those other solutions vanish, leaving only that
of (8). Third, there is the interesting case to consider

x(klﬁl ; 17(,331] . In that

case, the value of x4 defined by (8) violates the ex-
tremality condition (6). It is then impossible to find a
value of x4 so that the trajectory obeys Hamilton’s
principle: the trajectory ceases to be physical. This
case is easily recognizable and a finer discretization
has then to be used if a viable trajectory is desired
beyond the point in time reached so far.

Equation (8) therefore represents an algorithmic
formula for the exactly time-reversible computation
of a physical trajectory in granular space. It bears a
close resemblance to the original Verlet algorithm, eq.
(1), but supplements the latter with a rule of how to
avoid arbitrariness in the definition of the force term
in granular space. In addition, a numerical criterion
for the physical acceptability of the calculated trajec-
tory is provided. Extension to higher dimensions is
straightforward.

It is worth pointing out that momentum is exactly
preserved by the algorithm (8) under a rather general
condition, namely, whenever V' is a sum of distance-
dependent pair potentials, as is usually the case in
MDS [16]. This conservation property avoids the vex-
ing problem of a secular drift of momentum in MDS.

that no integer lies in the interval [
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Actually this property is not specific to algorithm (8),
but holds true for any integer representation of the
force term. On the other hand, total energy is not
exactly conserved in the algorithm (8), and hence it
usually fluctuates. However, time reversibility ensures
that there is no secular drift in energy [17].

To conclude, we have derived a new variant to Ver-
let’s algorithm appropriate for use in MDS. It is de-
rived from the fundamental physical principle of least
action, applicable in discretized state space and time.
It can be regarded as a quasi-Newtonian equation of
motion. It is exactly time-reversible. There is no secu-
lar drift in total energy. Therefore, the new algorithm
is highly appropriate for applications, for example, in
investigating the validity of Boltzmann’s determinis-
tic entropy concept, in far from equilibrium systems.
The most important property of the new algorithm ap-
pears to be that it provides a criterion (automatically
checked concomitantly) as to whether the computed
trajectory is physically acceptable.

The algorithm will be especially useful for the
planned setting-up of an exactly time-invertible de-
terministic artificial Newtonian universe.
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